Certification of a Numerical Result: Use of Interval Arithmetic and Multiple Precision

نویسندگان

  • Hong Diep Nguyen
  • Nathalie Revol
چکیده

Using floating-point arithmetic to solve a numerical problem yields a computed result, which is an approximation of the exact solution because of roundoff errors. In this paper, we present an approach to certify the computed solution. Here, ”certify” means computing a guaranteed enclosure of the error between the computed, approximate, result and the exact, unknown result. We discuss an iterative refinement method: classically, such methods aim at computing an approximation of the error and they add it to the previous result to improve its accuracy. We add two ingredients: interval arithmetic is used to get an enclosure of the error instead of an approximation, and multiple precision is used to reach higher accuracy. We exemplify this approach on the certification of the solution of a linear system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Precision Interval Packages: Comparing Different Approaches

We give a survey on packages for multiple precision interval arithmetic, with the main focus on three specific packages. One is within a Maple environment, intpakX, and two are C/C++ libraries, GMP-XSC and MPFI. We discuss their different features, present timing results and show several applications from various fields, where high precision intervals are fundamental.

متن کامل

Adaptive precision LLL and Potential-LLL reductions with Interval arithmetic

Lattice reduction is fundamental in computational number theory and in computer science, especially in cryptography. The celebrated Lenstra–Lenstra–Lovász reduction algorithm (called LLL or L) has been improved in many ways through the past decades and remains one of the central tool for reducing lattice basis. In particular, its floating-point variants — where the long-integer arithmetic requi...

متن کامل

CAMPARY: Cuda Multiple Precision Arithmetic Library and Applications

Many scientific computing applications demand massive numerical computations on parallel architectures such as Graphics Processing Units (GPUs). Usually, either floating-point single or double precision arithmetic is used. Higher precision is generally not available in hardware, and software extended precision libraries are much slower and rarely supported on GPUs. We develop CAMPARY: a multipl...

متن کامل

Polynomial Function Enclosures and Floating Point Software Verification

Proving partial correctness of floating point programs is a hard verification problem. This is in part because error analysis of finite precision computation is difficult and in part due to the high complexity of the generated verification conditions. Typical verification conditions that arise in this context are predicates with real inequalities as atoms and therefore numerical constraint solv...

متن کامل

Dynamical ‎C‎ontrol of Computations Using the Family of Optimal Two-point Methods to Solve Nonlinear ‎Equations

One of the considerable discussions for solving the nonlinear equations is to find the optimal iteration, and to use a proper termination criterion which is able to obtain a high accuracy for the numerical solution. In this paper, for a certain class of the family of optimal two-point methods, we propose a new scheme based on the stochastic arithmetic to find the optimal number of iterations in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010